Obtain the relation between torque of a system of particles and angular moment.
The total angular moment of a system of particles is the angular moment of individual particles. For a system of $n$ particles,
$\overrightarrow{\mathrm{L}}=\overrightarrow{l_{1}}+\overrightarrow{l_{2}}+\overrightarrow{l_{3}}+\ldots \overrightarrow{l_{n}}$
$=\sum_{i=1}^{n} \overrightarrow{l_{i}} \text { where } i=1,2,3, \ldots n$
and $\overrightarrow{l_{i}}=\overrightarrow{r_{i}} \times \overrightarrow{p_{i}}$
where $\overrightarrow{r_{i}}$ is the position vector of the $i^{\text {th }}$ particle with respect to a given origin and $\vec{p}_{i}$ is the linear momentum of the particle.
The total angular momentum of the system of particles as
$\therefore \overrightarrow{\mathrm{L}}=\sum_{i=1}^{n} \vec{l}_{i}=\sum_{i=1}^{n} \overrightarrow{r_{i}} \times \vec{p}_{i}$
Differentiating w.r.t. time
$\therefore \frac{d \overrightarrow{\mathrm{L}}}{d t}=\sum_{i=1}^{n} \overrightarrow{\tau_{i}} \quad \ldots \text { (1) }\left[\because \overrightarrow{r_{i}} \times \overrightarrow{p_{i}}=\overrightarrow{\tau_{i}}\right]$
$\therefore \vec{\tau}=\sum_{i=1}^{n} \overrightarrow{r_{i}} \times \overrightarrow{\mathrm{F}_{i}} \quad[\because \vec{\tau}=\vec{r} \times \overrightarrow{\mathrm{F}}]$
Here, $\overrightarrow{\mathrm{F}}_{i}$ is the force on the $i^{\text {th }}$ particle is the vector sum of external forces $\mathrm{F}_{\text {iext }}$ acting on the particle and the internal forces $F_{i \text { (int) }}$ exerted on it by the other particles of the system.
$\therefore \overrightarrow{\mathrm{F}}_{i}=\overrightarrow{\mathrm{F}}_{i(\mathrm{ext})}+\overrightarrow{\mathrm{F}}_{i(\mathrm{int})}$
$\therefore \vec{\tau}=\vec{\tau}_{(\mathrm{ext})}+\vec{\tau}_{(\mathrm{int})}$
where $\vec{\tau}_{(\mathrm{ext})}=\sum \overrightarrow{r_{i}} \times \overrightarrow{\mathrm{F}}_{i(\mathrm{ext})}$ and
$\vec{\tau}_{\text {(int) }}=\sum \overrightarrow{r_{i}} \times \overrightarrow{\mathrm{F}_{i}}_{\text {(int) }}$
A particle moves with a constant velocity in $X-Y$ plane. Its possible angular momentum w.r.t. origin is
$A$ ball of mass $m$ moving with velocity $v$, collide with the wall elastically as shown in the figure.After impact the change in angular momentum about $P$ is:
Why $\vec v \times \vec p = 0$ for rotating particle ?
Obtain $\tau = I\alpha $ from angular momentum of rigid body.
A particle of mass $2\, kg$ is on a smooth horizontal table and moves in a circular path of radius $0.6\, m$. The height of the table from the ground is $0.8\, m$. If the angular speed of the particle is $12\, rad\, s^{-1}$, the magnitude of its angular momentum about a point on the ground right under the centre of the circle is ........ $kg\, m^2\,s^{-1}$